Observation of an O8 molecular lattice in the ɛ phase of solid oxygen (2024)

Abstract

Of the simple diatomic molecules, oxygen is the only one to carry a magnetic moment. This makes solid oxygen particularly interesting: it is considered a ‘spin-controlled’ crystal1 that displays unusual magnetic order2. At very high pressures, solid oxygen changes from an insulating to a metallic state3; at very low temperatures, it even transforms to a superconducting state4. Structural investigations of solid oxygen began in the 1920s and at present, six distinct crystallographic phases are established unambiguously1. Of these, the ɛ phase of solid oxygen is particularly intriguing: it exhibits a dark-red colour, very strong infrared absorption, and a magnetic collapse1. It is also stable over a very large pressure domain and has been the subject of numerous X-ray diffraction5,6,7, spectroscopic8,9,10,11 and theoretical studies12,13,14. But although ɛ-oxygen has been shown to have a monoclinic C2/m symmetry5,6,7,15 and its infrared absorption behaviour attributed to the association of oxygen molecules into larger units9,14, its exact structure remains unknown. Here we use single-crystal X-ray diffraction data collected between 13 and 18 GPa to determine the structure of ɛ-oxygen. We find that ɛ-oxygen is characterized by the association of four O2 molecules into a rhombohedral molecular unit, held together by what are probably weak chemical bonds. This structure is consistent with existing spectroscopic data, and further validated by the observation of a newly predicted Raman stretching mode.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Learn more

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Observation of an O8 molecular lattice in the ɛ phase of solid oxygen (1)
Observation of an O8 molecular lattice in the ɛ phase of solid oxygen (2)
Observation of an O8 molecular lattice in the ɛ phase of solid oxygen (3)

Similar content being viewed by others

Observation of an O8 molecular lattice in the ɛ phase of solid oxygen (4)

Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance

Article 23 September 2019

Observation of an O8 molecular lattice in the ɛ phase of solid oxygen (6)

Magnetic phase diagram of the solid solution LaMn2(Ge1−xSix)2 (0 ≤ x ≤ 1) unraveled by powder neutron diffraction

Article Open access 03 June 2022

References

  1. Freiman, Y. A. & Jodl, H. J. Solid oxygen. Phys. Rep. 401, 1–228 (2004)

    Article ADS MathSciNet CAS Google Scholar

  2. Goncharenko, I. N., Makarova, O. L. & Ulivi, L. Direct determination of the magnetic structure of the delta phase of oxygen. Phys. Rev. Lett. 93, 055502 (2004)

    Article ADS CAS Google Scholar

  3. Desgreniers, S., Vohra, Y. K. & Ruoff, A. L. Optical response of very high density solid oxygen to 132 GPa. J. Phys. Chem. 94, 1117–1122 (1990)

    Article CAS Google Scholar

  4. Shimizu, K., Suhara, K., Ikumo, M., Eremets, M. I. & Amaya, K. Superconductivity in oxygen. Nature 393, 767–769 (1998)

    Article ADS CAS Google Scholar

  5. Johnson, S. W., Nicol, M. & Schiferl, D. Algorithm for sorting diffraction data from a sample consisting of several crystals enclosed in a sample environment apparatus. J. Appl. Cryst. 26, 320–326 (1993)

    Article Google Scholar

  6. Desgreniers, S. & Brister, K. E. in High Pressure Science and Technology (ed. Trzeciakowski, W. A.) 363–365 (World Scientific, Singapore, 1996)

    Google Scholar

  7. Weck, G., Loubeyre, P. & LeToullec, R. Observation of structural transformations in metal oxygen. Phys. Rev. Lett. 88, 035504 (2002)

    Article ADS CAS Google Scholar

  8. Akahama, Y. & Kawamura, H. High-pressure Raman spectroscopy of solid oxygen. Phys. Rev. B 54, R15602–R15605 (1996)

    Article ADS CAS Google Scholar

  9. Gorelli, F. A., Ulivi, L., Santoro, M. & Bini, R. The ɛ phase of solid oxygen: Evidence of an O4 molecule lattice. Phys. Rev. Lett. 83, 4093–4096 (1999)

    Article ADS CAS Google Scholar

  10. Akahama, Y. & Kawamura, H. High-pressure infra-red spectroscopy of solid oxygen. Phys. Rev. B 61, 8801–8805 (2000)

    Article ADS CAS Google Scholar

  11. Agnew, S. F., Swanson, B. I. & Jones, L. H. Extended interactions in the ɛ phase of oxygen. J. Chem. Phys. 86, 5239–5245 (1987)

    Article ADS CAS Google Scholar

  12. Serra, S., Chiarotti, G., Scandolo, S. & Tosatti, E. Pressure-induced magnetic collapse and metallization of molecular oxygen: the ζ-O2 phase. Phys. Rev. Lett. 80, 5160–5163 (1998)

    Article ADS CAS Google Scholar

  13. Gebauer, R. et al. Noncolinear spin polarization from frustrated antiferromagnetism: A possible scenario for molecular oxygen at high pressure. Phys. Rev. B 61, 6145–6149 (2000)

    Article ADS CAS Google Scholar

  14. Neaton, J. B. & Ashcroft, N. W. Low-energy linear-structures in dense oxygen: implications for the ɛ-phase. Phys. Rev. Lett. 88, 205503 (2002)

    Article ADS CAS Google Scholar

  15. Akahama, Y., Kawamura, H., Häusermann, D., Hanfland, M. & Shimomura, O. New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid. Phys. Rev. Lett. 74, 4690–4693 (1995)

    Article ADS CAS Google Scholar

  16. Nicol, M., Hirsch, K. R. & Holzapfel, W. B. Oxygen phase equilibria near 298 K. Chem. Phys. Lett. 68, 49–52 (1979)

    Article ADS CAS Google Scholar

  17. Goncharenko, I. N. Evidence of magnetic collapse in the epsilon phase of solid oxygen. Phys. Rev. Lett. 94, 205701 (2005)

    Article ADS Google Scholar

  18. McMahon, M. I., Nelmes, R. J. & Rekhi, S. Complex crystal structure of cesium-III. Phys. Rev. Lett. 87, 255502 (2001)

    Article ADS CAS Google Scholar

  19. Schiferl, D., Cromer, D. T. & Mills, R. L. Structure of O2 at 5.5 GPa and 299 K. Acta Crystallogr. B 37, 1329–1332 (1981)

    Article Google Scholar

  20. Schiferl, D., Cromer, D. T., Schwalbe, L. A. & Mills, R. L. Structure of ‘orange’ 18O2 at 9.6 GPa and 297 K. Acta Crystallogr. B 39, 153–157 (1983)

    Article Google Scholar

  21. Long, C. A. & Ewing, G. E. Spectroscopic investigation of van der Waals molecules. Infrared and visible spectra of (O2)2 . J. Chem. Phys. 58, 4824–4834 (1973)

    Article ADS CAS Google Scholar

  22. Aquilanti, V. et al. Quantum interference scattering of aligned molecules: binding in O4 and role of spin coupling. Phys. Rev. Lett. 82, 69–72 (1999)

    Article ADS CAS Google Scholar

  23. Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, New York, 1964)

    MATH Google Scholar

  24. SPARTAN version 5.1 (Wavefunction Inc., Irvine, California, 1998).

  25. Kim, K. S., Jang, J. H., Kim, S., Byung-Jin Mhin, B.-J. & Schaefer, H. F. Potential new high energy density materials: cyclooctaoxygen O8, including comparisons with the well-known cyclo-S8 molecule. J. Chem. Phys. 92, 1887–1892 (1990)

    Article ADS CAS Google Scholar

  26. Hanfland, M., Hemley, R. J. & Mao, H. K. Novel infrared vibron absorption in solid hydrogen at megabar pressures. Phys. Rev. Lett. 70, 3760–3763 (1993)

    Article ADS CAS Google Scholar

  27. Sihachakr, D. & Loubeyre, P. O2/N2 mixtures under pressure: A structural study of the binary phase diagram at 295 K. Phys. Rev. 70, 134105 (2004)

    Article Google Scholar

  28. SMART, SAINT, ASTRO and XPREP: Data Collection and Processing Software for the SMART System (Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, 1995).

  29. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. Completion and refinement of crystal structures with SIR92. J. Appl. Cryst. 26, 343–350 (1993)

    Article Google Scholar

  30. Sheldrick, G. M. SHELX97 Programs for Crystal Structure Analysis (Release 97-2). (Univ. of Göttingen, 1997)

Download references

Acknowledgements

We acknowledge discussions with T. Balic-Zunic on the sample twinning. We gratefully acknowledge the assistance of J. Warren and T. Prior in using beamline 9.8 at SRS, Daresbury Laboratory. The work was supported by research grants from the EPSRC, and facilities and other support from Daresbury Laboratory and the CCLRC. S.D. acknowledges the financial support of CEA/DAM Île-de-France and NSERC. Author Contributions P.L. and G.W. prepared the ɛ-oxygen crystals. L.F.L. and M.I.M. performed the X-ray measurements and the structural analysis. G.W. performed the calculations of the modes. S.D. and G.W. performed the Raman measurements. P.L. and M.I.M. wrote most of the paper.

Author information

Authors and Affiliations

  1. SUPA, School of Physics and the Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3JZ, UK

    Lars F. Lundegaard&Malcolm I. McMahon

  2. Département de Physique Théorique et Appliquée, Commissariat à l'Énergie Atomique, 91680, Bruyères-le-Châtel, France

    Gunnar Weck&Paul Loubeyre

  3. Department of Physics, University of Ottawa, Ontario, K1N 6N5, Canada

    Serge Desgreniers

Authors

  1. Lars F. Lundegaard

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  2. Gunnar Weck

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  3. Malcolm I. McMahon

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  4. Serge Desgreniers

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  5. Paul Loubeyre

    View author publications

    You can also search for this author in PubMedGoogle Scholar

Corresponding authors

Correspondence to Malcolm I. McMahon or Paul Loubeyre.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Table 1 which is an extended version of Table 1, Supplementary Figures 1–3 and a Supplementary Discussion on the uniqueness of the structure solution and on the observed twinning. (PDF 509 kb)

Rights and permissions

About this article

Cite this article

Lundegaard, L., Weck, G., McMahon, M. et al. Observation of an O8 molecular lattice in the ɛ phase of solid oxygen. Nature 443, 201–204 (2006). https://doi.org/10.1038/nature05174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05174

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Observation of an O8 molecular lattice in the ɛ phase of solid oxygen (2024)
Top Articles
Latest Posts
Article information

Author: Tyson Zemlak

Last Updated:

Views: 6237

Rating: 4.2 / 5 (63 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Tyson Zemlak

Birthday: 1992-03-17

Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

Phone: +441678032891

Job: Community-Services Orchestrator

Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.